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ABSTRACT
This paper proposes a novel method for transductive classi-
fication on heterogeneous information networks composed of
multiple types of vertices. Such networks naturally represent
many real-world Web data such as DBLP data (author, pa-
per, and conference). Given a network where some vertices
are labeled, the classifier aims to predict labels for the re-
maining vertices by propagating the labels to the entire net-
work. In the label propagation process, many studies reduce
the importance of edges connecting to a high-degree vertex.
The assumption is unsatisfactory when reliability of a label
of a vertex cannot be implied from its degree. On the basis
of our intuition that edges bridging across communities are
less trustworthy, we adapt edge betweenness to imply the im-
portance of edges. Since directly applying the conventional
edge betweenness is inefficient on heterogeneous networks,
we propose two additional refinements. First, the centrality
utilizes the fact that networks contain multiple types of ver-
tices. Second, the centrality ignores flows originating from
endpoints of considering edges. The experimental results on
real-world datasets show our proposed method is more effec-
tive than a state-of-the-art method, GNetMine. On average,
our method yields 92.79 ± 1.25% accuracy on a DBLP net-
work even if only 1.92% of vertices are labeled. Our simple
weighting scheme results in more than 5 percentage points
increase in accuracy compared with GNetMine.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; E.1 [Data]: Data
Structures—Graphs and networks
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Transductive Classification, Heterogeneous Information Net-
work, Edge Betweenness Centrality
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Figure 1: Bibliographic network countering the
degree-based normalization. The research theme of
the paper P1 should conform to that of the highly
experienced author A2 rather than that of the inex-
perienced author A1 because the research theme of
A2 is more well-established than A1

1. INTRODUCTION
In machine learning, supervised learning has been a promi-

nent paradigm. It makes predictions on the basis of a lim-
ited amount of data samples and their expected outputs. In
many cases, manually labeling all data in a given dataset is
a great burden as it is hard to scale, expensive, and prone to
human-error. In contrast, a huge pool of unlabeled data al-
ways exists with lower cost, especially in this era of big data.
Semi-supervised learning (SSL) that makes use of such un-
labeled data has been gaining more attention.

Many Web data can be described as a network, where
vertices represent entities of the system, and edges encode
interactions or relationships between the entities. Networks
can consist of multiple types of vertices such as bibliographic
networks (author, paper, and conference), social networks
(user, content, and page), and e-commerce purchasing logs
(buyer, product, and seller). These kinds of networks are
generally referred to as heterogeneous information networks.

We bring the two lines of research together by proposing a
novel method for transductive semi-supervised classification
on heterogeneous information networks. Given a network
where a limited number of vertices hold initial labels, the
classifier generally propagates the initial label information
to the whole network. The classifier does not produce any
decision functions or general rules to serve further unseen
data. This paradigm is generally called transductive classifi-
cation. The propagation process of many graph-based clas-
sifiers is based on the smoothness assumption — if two ver-
tices are linked by a strong tie, then their outputs are likely
to be close [5]. Several studies reduce influence of edges in
accordance with the degrees of their endpoints to suppress
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Figure 2: Network with an inter-community edge
denoted by the red dashed line. The reliabilities
of labels propagating through such inter-community
edge should be discounted.

popular vertices from dominating the propagation process
[16, 15, 17]. While edge weight normalization seems like a
simple heuristic, it is one of the deciding factors for boosting
the predictive performance. We observe significant improve-
ment in accuracy by changing the normalization method to
our proposed one.

We argue that the degree-based method is not effective
when reliability of a label of a vertex cannot be implied
from its degree. Figure 1 illustrates a bibliographic network
consisting of two authors and their papers. Author A1 tends
to be inexperienced. In contrast, author A2 is a top author
who has published thousands of papers. Suppose we aim to
infer the research theme of the paper P1 from its neighbors,
A1 and A2, on the basis of the smoothness assumption. Fol-
lowing the degree-based normalization, the label of P1 tends
to conform with present label of A1, rather than the high
profile author A2, especially when the confidences of labels
from A1 and A2 are comparable. We argue that this is
not always reasonable. An author publishing many papers
tends to have more well-established research interests than
a young author. Thus, the research theme of the paper P1

should conform to the research theme of A2. This example
shows that the degree-based method is not always effective.

This paper provides a new insight into the edge weight
normalization. Instead of edges originating from high degree
vertices, we propose that edges bridging across communities,
called inter-community edges, are less reliable for making la-
bel inference. Generally, the term community means a set
of vertices that are densely connected internally and loosely
connected with vertices outside. Figure 2 illustrates an ex-
ample of an inter-community edge denoted by the red dashed
line. The most well-known measure capturing the charac-
teristic is edge betweenness centrality. It has been applied in
many applications, for example community detection [11],
biological function investigation in protein interaction net-
works [8], and topology-controlling for wireless sensor net-
works [7]. We discover that näıvely applying the conven-
tional edge betweenness in heterogeneous networks is inef-
fective because it is defined on the basis of an assumption
that networks are homogeneous. We enhance the central-
ity by considering that networks contain multiple types of
vertices.

The main contribution of this paper is twofold: (1) this
paper sheds new light on employing the concept of the edge
betweenness centrality in the edge weight normalization (2)
we further improve the centrality to make it suitable for

heterogeneous networks. With the proposed normalization,
we gain more than 5 percentage points increase in accuracy
from a state-of-the-art method, GNetMine [16], on dense
networks derived from the DBLP dataset. It highlights that
the edge weight normalization has a serious effect on accu-
racy of graph-based classification.

This paper first gives an overview of transductive learn-
ing in Section 2. It then details the proposed method in
Section 3. Section 4 presents experiment results of the pro-
posed method in comparison with existing state-of-the-art
research on various datasets and settings. Finally, Section 5
concludes this paper and provides potential extensions.

2. RELATED WORK
In 2003, Zhu et al. proposed a SSL method based on a

Gaussian random field model, popularly known as label prop-
agation (LP) [27]. It tries to maintain smoothness of labels
over the given graph and strictly preserve the initial labels
by optimizing a cost function. In practical cases, some ini-
tial labels are possibly inaccurate because of human errors
in a dataset preparation process. Zhou et al. proposed local
and global consistency (LGC) [26] which allows initial labels
to be slightly changed. Another contribution is that it is the
very first method to normalize edge weights in accordance
with the degree of their endpoints, while previous research
did not normalize the weights [23, 27, 3]. This degree-based
normalization has been exploited in spectral clustering be-
fore [6, 20]. Adsorption [2] and modified adsorption [24] have
been proposed. They reduce the importance of vertices with
respect to the Shannon entropy of their edges, which be-
comes inversely proportional to their degrees in unweighted
networks. In 2014, Gong et al. proposed a new concept of
smoothness called local smoothness via ReLISH [12]. It reg-
ularizes labels of vertices weakly connected to neighbors to
prevent erroneous label propagation.

The methods presented above assume that an input net-
work contains a single type of vertices called homogeneous
information network. Researchers have recently become in-
creasingly interested in mining heterogeneous networks. In
2010, Ji et al. proposed GNetMine [16], which generalizes
LGC to heterogeneous networks. GNetMine inherits the
degree-based edge weight normalization from LGC. How-
ever, GNetMine considers the types of edges when it mea-
sures degrees of vertices. In 2011, Ji et al. proposed RankClass
[15], which combines ranking and classification in order to
analyze more accurately. RankClass normalizes edge weights
in two ways: the degree-based and the confidence-based
method. In 2014, Luo et al. proposed HetPathMine [17],
which extends GNetMine by incorporating the concept of
meta-path [22]. The term meta-path means a path composed
of a sequence of relations defined between different vertex
types. The method measures the significance of meta-paths
and utilizes them for classification. It inherits the degree-
based normalization as well. Jacob et al. proposed to com-
pute a latent representation of vertices in a space that is
common to all types of vertices, and deduce labels from the
representation [13]. Their method does not normalize the
influence of edges.

Overall, some previous works do not normalize edge weights,
and some normalize them in accordance with the degrees of
their endpoints. We originally propose to penalize inter-
community edge. The proposed normalization can be easily
plugged into the mentioned methods.
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3. PROPOSED METHOD

3.1 Problem Definition
This section begins by formally defining heterogeneous in-

formation networks. Next, it will specify the transductive
classification problem on heterogeneous networks. We use
capital bold letters for matrices (e.g. A), and lower case
bold letters for column vectors (e.g. a). Capital bold letters
with subscripts represent elements of the matrix (e.g. Aij

is the element at the ith row and jth of column of A). Func-
tions are denoted by capital non-bold letters (e.g. F). Sets
are denoted by capital non-bold italic letters (e.g. S).

Definition 1. Heterogeneous information network. A het-
erogeneous information network, in this work, is defined as
an unweighted undirected network G = (V,E,W ). V is a
set of n vertices. The set is composed of t types of vertices
denoted by V1 = {v11, · · · , v1n1} , · · · , Vt = {vt1, · · · , vtnt},
where ni = |Vi| and n =

∑t
i=1 ni. When t = 1, the

network G becomes a homogeneous information network.
One vertex belongs to exactly one type, in other words,
∀i, j : i 6= j → Vi ∩ Vj = ∅. E is a set of m edges, com-
posed of e = (vip, vjq) ∈ V × V . W = {W11, · · · ,Wtt} is
a set of adjacency matrices denoted by Wij ∈ {0, 1}ni×nj ,
where i, j ∈ {1, · · · , t}. An element Wij,pq = 1 if two ver-
tices vip ∈ Vi and vjq ∈ Vj are linked together, otherwise
zero. We say a network has r types of relationships when
|{Wij |Wij ∈W ∧Wij 6= 0}| = 2r.

Definition 2. Transductive classification on heterogeneous
networks. The inputs of the problem are a heterogeneous in-
formation network G = (V,E,W ) and a set of initial label
information L. VL is a set of labeled vertices. C is a set of
possible labels, typically |VL| � |V |. Without loss of gener-
ality, we assume that the possible labels are C = {1, · · · , |C|}.
The existence of a tuple (v, c) in L means the vertex v is
initially labeled with the label c. In other words, c is an
initial label of v. The set VU = V − VL is the set of unla-
beled vertices. This study assumes the given network con-
tains no self-loops. The goal of the transductive classifica-
tion task is to predict the labels of all unlabeled vertices
VU . First, the classifier computes soft label column vectors
f ci ∈ Rni , for all i ∈ {1, · · · , t} and c ∈ C. A column vec-
tor f ci = [fc

i1, · · · , fc
ini

]> represents the confidence that each
vertex in Vi should belong to a label c. A high value of fc

ip

shows that the classifier believes that a vertex vip tends to
belong to the class c.

3.2 Basic Framework
The input of our proposed method is a heterogeneous in-

formation network G = (V,E,W ) and a set of labeled ver-
tices L. First, the label information from L is represented as
initial label column vectors yc

i ∈ {0, 1}ni , for i ∈ {1, · · · , t}
and c ∈ C. A column vector yc

i = [yci1, · · · , ycini
]> encodes

the label information of all vertices vip ∈ Vi regarding a la-
bel c ∈ C. If a vertex vip is labeled to a class c, (vip, c) ∈ L,
then ycip = 1, otherwise zero. The proposed method propa-
gates label information from the labeled vertices VL to the
entire network. Our proposed method has a trade-off be-
tween the two following constraints. First, the initial labels
of seed vertices should be retained, called fitting constraint.
Second, similar labels should be assigned to neighboring ver-
tices, called smoothness constraint. To this end, the pro-
posed method seeks the set of soft label matrix vectors that

minimizes the cost function

J(f c1 , · · · , f ct ) =

t∑
i=1

E(f ci ) (1)

E(f ci ) =αi

ni∑
p=1

(
fc
ip − ycip

)2
+

t∑
j=1

λij

ni∑
p=1

nj∑
q=1

W̄ij,pq

(
fc
ip − fc

jq

)2
, (2)

where αi and λij are non-negative parameters balancing be-
tween the fitting and smoothness constraints, and W̄ij,pq is
a normalized weight of an edge between vertices vip ∈ Vi

and vjq ∈ Vj . For all i, j, the parameter λij is equal to λji.
The edge weight normalization process is described in fur-
ther detail in Section 3.3. A higher value of a normalized
edge weight W̄ij,pq indicates that the soft labels of vip and
vjq tend to be more similar. The term global cost function
will be used when referring to J(.), and local cost function
for E(.). After the optimal f ci

∗ = [fc∗
i1 , · · · , fc∗

ini
]> is found,

for i ∈ {1, · · · , t} and c ∈ C, the final predicted label of a
vertex vip can be simply determined as

cip = argmax
c ∈ C

fc∗
ip . (3)

The first term of the right hand side of Eq.(2) corresponds
to the fitting constraint. A parameter αi indicates trustwor-
thiness of initial labels of seed vertices in a vertex type Vi.
Suppose there is a bibliographic network containing vertices
representing author, papers, and conferences such that some
vertices are labeled with their research theme. Suppose we
want to infer the research theme of every vertex. Generally,
a research theme of an author is more ambiguous than that
of a conference, so determining the initial labels of an author
is prone to errors. Therefore, the parameter αi of conference
vertices should be higher than that of the authors. The sec-
ond term enforces the smoothness constraint. The parame-
ter λij controls the degree of reliability of relations between
vertices in Vi and Vj . A large λij means labels of vertices in
Vi can be faithfully inferred from labels of their neighbors
in Vj . A user may set the parameter λij of relationships
between papers and conferences to be higher than that be-
tween papers and authors. These two parameters allow the
method to treat each type of relationship uniquely, which is
an advantage of learning on heterogeneous networks.

3.3 Edge Weight Normalization
We normalize the weight of an edge e = (vip, vjq) ∈ E as

W̄ij,pq =
1

C(e)
Wij,pq, (4)

where C(.) is a normalizing function. By plugging Eq.(4)
into Eq.(2), we obtain the complete definition of E(.). Our
cost function is different from that of GNetMine, particu-
larly the second term of E(.). The second term of E(.) of
GNetMine is

t∑
j=1

λij

ni∑
p=1

nj∑
q=1

Wij,pq

(
fc
ip√
dij,p

−
fc
jq√
dji,q

)2

,

where dij,p is the summation of the pth row of Wij . GNet-
Mine aims to reduce the impact of popular vertices. Hence,
the normalizing terms, dij,p and dji,q, are located below fc

ip
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and fc
jq of vertices. In contrast, we aim to reduce the im-

pact of inter-community edges. Therefore, our normalizing
function C(.) is located below the weight of edges as Eq.(4).

Ideally, C(e) is expected to be high if the edge e is an inter-
community edge. We hypothesize that labels propagating
through such edge are less reliable for making inference. The
normalization help us decrease erroneous flows propagating
through inter-community edges.

The inter-community characteristic can be captured by
edge betweenness centrality [11, 19]. It measures the influ-
ence of an edge over flows of information between vertices,
assuming that the flows follow the shortest paths. Origi-
nally, the edge betweenness centrality is defined as

CB0(e) =
∑

s,t∈V

σ(s, t|e)
σ(s, t)

, (5)

where σ(s, t|e) is the number of the shortest paths from ver-
tex s to vertex t passing through an edge e, and σ(s, t) is the
number of the shortest paths from s to t. By convention, let
0
0

= 0 in this equation. From now on, the edge centrality
CB0(.) is called homogeneous edge betweenness centrality be-
cause the centrality is defined on the basis of an assumption
that the given network contains single type of vertices. The
fact that some networks contain multiple types of vertices is
not considered. In contrast, we propose an edge betweenness
centrality for heterogeneous networks, called heterogeneous
edge betweenness centrality. It has two important proper-
ties: excluding flows from endpoints and ignoring irrelevant
flows, which means flows from vertices of non-target types.
The proposed heterogeneous edge betweenness of an edge
e = (vip, vjq), where vip ∈ Vi and vjq ∈ Vj , is defined as

CB1(e) = 1 +
∑

s∈Vi\EP(e)

∑
t∈Vj\EP(e)

σ(s, t|e)
σ(s, t)

, (6)

where EP(e) indicates the set of endpoints of the edge e,
which is {vip, vjq}.

The idea of excluding flows from endpoints is motivated
by Freeman’s vertex betweenness [9]. He defined the be-
tweenness of a vertex u as

VB(u) =
∑

s,u,t∈V :s6=u6=t

σ(s, t|u)

σ(s, t)
, (7)

where σ(s, t|u) is the number of the shortest paths from
a vertex s to a vertex t passing through a vertex u. We
observed that one important property of vertex betweenness
is missing from edge betweenness — flows originating from
the vertex u are not counted. Therefore, when calculating
the edge betweenness of an edge, we propose to ignore flows
originating from its endpoints. The experimental results
presented in Section 4.2 ensure the benefit of this refinement.

The homogeneous edge betweenness, defined in Eq.(5),
does not differentiate multiple types of vertices. Figure 3
shows an example of a heterogeneous network where the
homogeneous edge betweenness exhibits an irrational result.
The vertices with the prefixes A, P , and C represent author,
paper, and conference vertices, respectively. Let us start by
calculating CB0(e4) and CB0(e5) as

CB0(e4) = 2

 ∑
s∈{A1,A2,A3,P1}

∑
t∈{A4,P2,C1}

σ(s, t|e)
σ(s, t)

 = 24,

A1

P1

A3

A2

C1

P2

A4

e1

e2
e3

e4 e5

e6

Figure 3: Heterogeneous bibliographic network con-
taining authors (circles), papers (squares), and a
conference (diamond).

CB0(e5) = 2

 ∑
s∈{A4,P2}

∑
t∈{A1,A2,A3,P1,C1}

σ(s, t|e)
σ(s, t)

 = 20.

The CB0(e4) is higher than CB0(e5) even if both papers have
edges dedicated to the conference. The only difference is the
number of corresponding authors of papers P1 and P2. The
shortest paths from {A1, A2, A3} and {A4} to {C1} are the
crucial point of the different values. In the case of CB0(e4),
the flows from three authors, {A1, A2, A3}, to the conference
are counted. In CB0(e5), the flow from only one author,
{A4}, is counted. This shows that a paper written by more
authors has a higher value of CB0(.).

Given the network as illustrated in Figure 3 and initial
labels of P1 and P2, the label of C1 can be implied from the
labels of P1 and P2 under the smoothness assumption. As
stated earlier, this research hypothesizes that edges in be-
tween communities are less reliable. If CB0(e4) and CB0(e5)
are employed to measure the influence of the labels of P1 and
P2 over the label of C1 respectively, then the method tends
to assign the initial label of P2 to C1 because CB0(e5) <
CB0(e4). This example reveals that a label of a paper written
by many authors is less reliable based on the homogeneous
betweenness. Obviously, this is not reasonable. Therefore,
we propose to ignore flows or the shortest paths originating
from irrelevant vertices, which means vertices of non-target
types. In summary, one advantage of CB1(.) over CB0(.)
is that CB1(.) reduces the influence of irrelevant flows by
ignoring the shortest paths originating from authors while
considering paper-conference edges in this example.

In this section, two edge betweenness centralities have
been introduced, CB0(.) and CB1(.). The normalizing func-
tion C(.) can be either of them.

3.4 Solving the Optimization Problem
Our optimization method is based on that of GNetMine.

However, our cost function is different from theirs, as men-
tioned in Section 3.3. This section shows the method to
optimize our cost function.

We find the set of soft label vectors, f ci for all i ∈ {1, · · · , t}
and c ∈ C, that optimize J(.) by block coordinate descent
(BCD) method. It seeks the optimal solution by optimizing
only one soft label vector f ci at one time, while keeping the
remaining label vectors fixed at their last updated values.
The process is repeated until convergence.

First, the local cost function E(.) is transformed into a
matrix form. The first term of Eq.(2), can be rewritten as

αi

ni∑
p=1

(
fc
ip − ycip

)2
= αi (f ci − yc

i )> (f ci − yc
i ) . (8)
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The second term of the Eq.(2) can be rewritten as

t∑
j=1

λij

ni∑
p=1

nj∑
q=1

W̄ij,pq

(
fc
ip − fc

jq

)2
=

t∑
j=1

λij

ni∑
p=1

nj∑
q=1

W̄ij,pq

(
fc
ip

2 + fc
jq

2 − 2fc
ipf

c
jq

)

=

t∑
j=1

λij

(
ni∑
p=1

nj∑
q=1

W̄ij,pqf
c
ip

2 +

ni∑
p=1

nj∑
q=1

W̄ij,pqf
c
jq

2

− 2

ni∑
p=1

nj∑
q=1

W̄ij,pqf
c
ipf

c
jq

)

=

t∑
j=1

λij

(
ni∑
p=1

fc
ipD̄ij,ppf

c
ip +

nj∑
q=1

fc
jqD̄ji,qqf

c
jq

− 2

ni∑
p=1

nj∑
q=1

fc
ipW̄ij,pqf

c
jq

)

=

t∑
j=1

λij

(
f ci
>D̄ijf

c
i + f cj

>D̄jif
c
j − 2f ci

>W̄ijf
c
j

)
, (9)

where D̄ij ∈ Rni×ni
≥0 is a diagonal matrix with diagonal el-

ements D̄ij,pp =
∑nj

q=1 W̄ij,pq, for p ∈ {1, · · · , ni}. Hence,
by plugging Eq.(8) and Eq.(9) into Eq.(2), the local cost
function can be alternatively defined as

E(f ci ) =

t∑
j=1

λij

(
f ci
>D̄ijf

c
i + f cj

>D̄jif
c
j − 2f ci

>W̄ijf
c
j

)
+ αi (f ci − yc

i )> (f ci − yc
i ) . (10)

Let us start by finding one optimal soft label vector while
the others are fixed. It can be obtained by setting the first
derivative of the local cost function with respect to f ci to
zero. The first derivative of E(.) is

∂

∂f ci

[
t∑

j=1

λij

(
f ci
>D̄ijf

c
i + f cj

>D̄jif
c
j − 2f ci

>W̄ijf
c
j

)

+ αi (f ci − yc
i )> (f ci − yc

i )

]

=
∂

∂f ci

[
t∑

j=1,j 6=i

λij

(
f ci
>D̄ijf

c
i + f cj

>D̄jif
c
j − 2f ci

>W̄ijf
c
j

)

+ λii

(
2f ci
>D̄iif

c
i − 2f ci

>W̄iif
c
i

)
+ αi (f ci − yc

i )> (f ci − yc
i )

]

=

t∑
j=1,j 6=i

λij

(
2D̄ijf

c
i − 2W̄ijf

c
j

)
+ λii

(
4D̄iif

c
i − 4W̄iif

c
i

)
+ αi (2f ci − 2yc

i )

=2

 t∑
j=1,j 6=i

λijD̄ij + αiI + 2λii

(
D̄ii − W̄ii

) f ci

− 2

 t∑
j=1,j 6=i

λijW̄ijf
c
j + αiy

c
i

 . (11)

By setting the first derivative of E(.) with respect to f ci ,
as shown in Eq.(11), to zero, we obtain the optimal f ci that

is the minimizer of the local cost function E(.) as

f c∗i =

 t∑
j=1,j 6=i

λijD̄ij + αiI + 2λii

(
D̄ii − W̄ii

)−1

 t∑
j=1,j 6=i

λijW̄ijf
c
j + αiy

c
i

 . (12)

However, the above solution is based on matrix inversion,
which is not suitable for a large sparse network because the
inverse of a matrix tends to be dense even if the source
matrix is sparse. The advantage of a sparse matrix structure
cannot be taken. Thus, we present an iterative optimization
algorithm that avoids matrix inversion. It is based on the
Jacobi iterative method [21]. Given a linear system Mx = b,
the approximate solution at step k + 1 is

x
(k+1)
i =

1

Mii

bi −
∑
j 6=i

Mijx
(k)
j

 . (13)

Hence, a soft label vector f ci at step k + 1 is

f
c(k+1)
i =

 t∑
j=1,j 6=i

λijD̄ij + αiI + 2λiiD̄ii

−1

 t∑
j=1,j 6=i

λijW̄ijf
c(k)
j + αiy

c
i + 2λiiW̄iif

c(k)
i

 . (14)

Even though Eq.(14) involves matrix inversion, its results
are still sparse because the inversion of a diagonal matrix
is diagonal as well. The inversion of a diagonal matrix can
be easily computed in linear time in accordance with the
number of diagonal elements. Algorithm 1 summarizes the
iterative optimization algorithm for determining predicted
labels of all vertices vip ∈ V .

3.5 Computational Complexity
Section 3.4 presents an iterative optimization algorithm

that aims to seek the optimal soft labels of all vertices. It
first starts by initializing soft label vectors f ci at Line 1.
Preliminarily, they are initialized to the corresponding ini-
tial label vectors yc

i . The total size of all soft label vectors is
n|C|, so this step takes O(n|C|). At Line 2, edge weight ma-
trices are normalized on the basis of their edge betweenness
centrality as described in Section 3.3. Assuming central-
ities are given beforehand, the normalization needs O(m)
since each edge is processed once. In 2008, Brandes intro-
duced an O(nm) algorithm to compute edge betweenness
[4]. It was adapted in this present study. Next, Lines 3-6
create vertex degree matrices D̄ij derived from the normal-
ized edge weight matrices W̄ij . Basically, the algorithm it-
erates through all edges, so the time complexity of this step
is O(m). It then computes the first term of Eq.(14). The
degree matrices of each vertex type are summed up together.
Let us define ri as the number of neighboring vertex types of
a vertex type Vi such that ri = |{j |Wij ∈W ∧Wij 6= 0}|
and

∑t
i=1 ri = 2r. This line takes

∑t
i=1 (niri + ni) steps.
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Algorithm 1: Iterative optimization algorithm

Input : Heterogeneous network G = (V,E,W )
Initial label yc

i , for i ∈ {1, · · · , t} and c ∈ C
λij and αi, for i, j ∈ {1, · · · , t}

Output: Predicted label cip, for i ∈ {1, · · · , t} and
p ∈ {1, · · · , ni}

1 f ci ← yc
i , for i ∈ {1, · · · , t} and c ∈ C

2 W̄ij ← EdgeNormalize(Wij), for Wij ∈W

3 Dij ← 0ni×ni , for i, j ∈ {1, · · · , t}
4 foreach (vip, vjq) ∈ E do
5 Dij,pp ← Dij,pp + W̄ij,pq

6 end

7 Mi ←
∑t

j=1,j 6=i λijD̄ij + αiI + 2λiiD̄ii, for

i ∈ {1, · · · , t}
8 repeat
9 foreach c ∈ C do

10 foreach i ∈ {1, · · · , t} do
11 f ci ←

Mi
−1
(∑t

j=1,j 6=i λijW̄ijf
c
j + αiy

c
i + 2λiiW̄iif

c(t)
i

)
12 end

13 end

14 until convergence

15 cip ← arg max
c∈C

fc
ip, for i ∈ {1, · · · , t} and p ∈ {1, · · · , ni}

Its inequality is

t∑
i=1

(niri + ni) ≤
t∑

i=1

(
ni

t∑
i=1

ri

)
+

t∑
i=1

ni.

= 2

t∑
i=1

(nir) +

t∑
i=1

ni.

= 2nr + n.

Hence, Line 7 spends O(n(r + 1)). It then iteratively opti-
mizes soft label vectors. At Lines 10-12, the soft label vector
of a vertex type Vi and a class c is updated. It aggregates
the multiplication of edge weights and the current soft la-
bel of their endpoints. This operation takes O(mi) for each
vertex type, in total O(m). Further, incorporating initial la-
bels and dividing by Mi, which needs O(n), are conducted.
The update procedures are performed for all c ∈ C and re-
peated until convergence. Therefore, the algorithm takes
O(τ |C|(n+m)), where τ is the number of iterations. At Line
15, the final prediction can be determined within O(n|C|).
Finally, the time complexity of the iterative optimization al-
gorithm, presented in Algorithm 1, is O(τ |C|(n + m)). In
our experiment, τ was less than twenty.

4. EXPERIMENTS
This paper proposes to utilize edge betweenness in the

edge weight normalization process. Furthermore, two re-
finements are proposed to make the centrality more suitable
for heterogeneous networks. Two questions were raised:

1. Are the two refinements of the edge betweenness really
useful?

2. How accurate is the method with the edge betweenness
centrality compared with the existing methods?

Two set of experiments were conducted on real-world datasets
to answer the questions. Section 4.1 describes the datasets
used in this study. Section 4.2 and Section 4.3 reveal evi-
dence to answer the questions.

4.1 Dataset

Heterogeneous Network
We performed experiments on the four-area dataset, pro-
vided by [10] and [16]. It is a sub-network of the DBLP1

dataset on four research areas — information retrieval, arti-
ficial intelligence, data mining, and database. Hence, there
are four possible labels in this dataset. Figure 4 shows
the topology of the network derived from this dataset. It
contains four types of vertices: paper, author, term, and
conference. In total, it consists of 36,915 vertices divided
into 13,896 papers, 14,216 authors, 8,785 terms, and 18
conferences: SIGIR, WWW, WSDM, CIKM, ECIR, AAAI,
ICML, IJCAI, CVPR, KDD, ICDM, PAKDD, SDM, VLDB,
EDBT, PODS, ICDE, and SIGMOD. Three kinds of edges
exist in the network: author-paper, conference-paper, and
term-paper. An author and a paper are connected if and
only if the author writes the paper. An edge between a pa-
per and a conference indicates that the paper is published
in the conference or journal. The semantic of a relationship
between a term and a paper is that the term appears in the
title of the paper. In total, the network contains 165,157
edges in the networks. The dataset contains label informa-
tion of 99 (0.71%) papers, 4049 (28.48%) authors, and 18
(100.00%) conferences.

Paper

TermConf.

Author

Figure 4: Topology of four-area dataset

Homogeneous Network
In addition, we also studied the effectiveness of methods
on three famous homogeneous networks: Zachary’s karate
club [25], dolphin [18], and political blogs [1]. The Zachary’s
karate club network represents friendships of 34 members of
a karate club at a US university in the 1970s. The dolphin
social network represents frequent associations between 62
dolphins in a community living off Doubtful Sound. The po-
litical blogs network represents hyperlinks between weblogs
regarding US politics, recorded in 2005. The ground-truth
labels of all vertices in datasets are available. It is worth
conducting experiments on these datasets because they can
confirm the effectiveness of methods when edges between
the same type of vertices exist. Table 1 summarizes proper-
ties of the networks. Figure 5 visualizes the networks where
nodes are colored in accordance with ground-truth labels.
1http://www.informatik.uni-trier.de/˜ley/db/
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Table 1: Properties of political blogs, Zachary’s
karate club, and dolphin networks.

Measure Karate Dolphin Political blogs

n 34 62 1,222

m 78 159 16,714

|C| 2 2 2

(a) Karate (b) Dolphin (c) Political blogs

Figure 5: Visualization of homogeneous networks
used in experiments: Zachary’s karate club (a), dol-
phin (b), and political blogs (c) networks. The colors
of vertices indicates their ground-truth labels. The
purple edges are inter-community edges. The blue
and red edges are intra-community edges.

4.2 Comparison of Edge Betweenness Central-
ities

Section 3.3 proposed two additional refinements of the
edge betweenness. Now, we aim to evaluate their effective-
ness via two experiments. First, we compare the capabil-
ities of the centralities CB0 and CB1 to distinguish intra-
community and inter-community edges. It is important to
note that inter-community edges connect vertices in differ-
ent classes together. This capability is crucial because it
can prevent labels from erroneously flowing beyond its own
class. Second, we evaluate how the centralities can support
transductive classifiers to gain higher accuracy.

The first experiment evaluates the proposed centrality
which excludes flows from endpoints, CB1, and the con-
ventional centrality, CB0, by using them to rank edges of
a network. The inter-community edges are expected to be
ranked at the beginning positions of the output. The eval-
uation metric used in this experiment was the normalized
discounted cumulative gain (NDCG), proposed by [14]. It is
a well-known evaluation metric for information retrieval. It
is defined as

NDCG =
DCG

IDCG
, (15)

DCG =

|Q|∑
i=1

2r(i) − 1

log2(i+ 1)
,

IDCG =

|R|∑
i=1

1

log2(i+ 1)
,

where |Q| is the size of a ranking result, |R| is the number
of inter-community edges, and r(i) is the relevance score
of the ith edge of the result. The relevance score is bi-
nary, r(i) ∈ {0, 1}. A relevance score r(i) is 1 if and only
if the ith edge is an inter-community edge, otherwise zero.
NDCG ranges from 0.0 to 1.0. NDCG assumes that it is
less useful when an inter-community edge is ranked at a

Table 2: Comparison of NDCG calculated from lists
of edges that were sorted according to the proposed
centrality CB1 which excludes flows from/to end-
points and the conventional homogeneous edge be-
tweenness centralities CB0.

Network
NDCG

Excl. endpoints (CB1) Incl. endpoints (CB0)

Karate 0.812 0.740

Dolphin 0.804 0.801

Political blogs 0.847 0.820

lower position of the result. Thus, NDCG penalizes the rel-
evance score logarithmically proportional to the position of
the edge. A higher NDCG indicates much better perfor-
mance. The Zachary’s karate club, dolphins, and political
blogs networks were used in this experiment because they
contain complete label information of vertices. Since the
datasets are homogeneous networks, this means that only
the property regarding edges’ endpoints of CB1 was tested.
The results are shown in Table 2. They indicate that, by
excluding endpoints, the edge betweenness is more likely to
assign a high value to inter-community edges that help to
prevent erroneous flows. With this property and Eq.(4), nor-
malized weights of inter-community edges tend to be lower
than those of intra-community edges.

Next, four variants of edge betweenness were evaluated on
the four-area network. The normalizing function of Eq.(4),
C(.), is substituted with the following four measures:

Heterogeneous (CB1): 1 +
∑

s∈Vi\EP(e)

∑
t∈Vj\EP(e)

σ(s, t|e)
σ(s, t)

Heterogeneous incl. endpoints: 1 +
∑
s∈Vi

∑
t∈Vj

σ(s, t|e)
σ(s, t)

Homogeneous (CB0):
∑

s,t∈V

σ(s, t|e)
σ(s, t)

Without normalization: 1.

This experiment evaluated the classification ability of the
proposed method with the four normalizing functions on the
four-area network. Labeled authors were randomly chosen
and added to L. The sizes of L were set to 5%, 10%, 15%,
and 20% of authors in the network. The parameters λij

and αi were set to 0.2 and 0.1, for i, j ∈ {1, · · · , 4}, respec-
tively, as previous studies [15, 16, 17]. Even though these
are not the best parameter settings, but they are effective
enough to demonstrate capabilities of centralities. Five in-
dependent iterations of the experiment were conducted. We
allowed optimization methods to run until L2 norm of the
difference between soft label vectors at the present step and
the previous one become less than 0.001.

The accuracies of methods are plotted in Figure 6. The
results suggest that the centrality CB1 employing our pro-
posed refinements can help the method to achieve a rela-
tively higher accuracy. The method without normalization
yields slightly lower accuracy, especially when seed vertices
are limited. Thus, from now on, CB1 is used as the normal-
izing function, by plugging it into Eq.(4).
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Figure 6: Mean accuracy (± 1 SD) of the proposed
method, with four normalizing functions, evaluated
on the four-area network where seed vertices are
randomly 5%, 10%, 15%, and 20% of authors in the
network.

4.3 Comparison of Methods
We compared the accuracies of the proposed method, us-

ing CB1, and two state-of-the-art transductive classifiers on
various datasets and settings. The proposed method shares
several common hypothesis with GNetMine [16], except the
edge weight normalization. Therefore, GNetMine was treated
as one of the baselines. Some readers doubt the advantage of
generalizing transductive classification to heterogeneous net-
works. This experiment aims to clarify this point by adding
LGC [26], a transductive classifier designed for homogeneous
networks, as another baseline system. As in the previous ex-
periment, the parameters λi and αij were set to 0.2 and 0.1
respectively, for all i, j and methods. In all experiments, the
label information was the same for every method.

Next, the proposed method and baselines were evaluated
on the Zachary’s karate club, dolphin, and political blogs
networks. Four random vertices were selected and added to
L. At least one labeled vertex was guaranteed to be present
in each class. The experiment was repeated ten times in-
dependently. The networks are homogeneous, hence GNet-
Mine reduces to LGC.

Figure 7(a) compares the accuracies and standard devia-
tions of the proposed method and GNetMine. On average,
the proposed method achieves better accuracy. According
to the paired one tailed t-test, the differences are statis-
tically significant (p=0.022) in the political blogs network
but not in the Zachary’s karate club (p=0.150) and dolphin
(p=0.054) networks. It is possible to hypothesize that the in-
significance is likely to occur in a small network. Figure 7(b),
7(c), and 7(d) present the accuracy obtained in each repeti-
tion of experiments on Zachary’s karate, dolphin, and polit-
ical blogs networks, respectively. The detailed results reveal
that one important benefit of the proposed method is its
stability. The proposed method gains an equivalent level of
accuracy in every trial of the experiments but the degree-
based methods fails in some repetitions.

Figure 8(a) presents the four seed vertices used in the fifth
iteration of the dolphin network experiment reported in Fig-
ure 7(c). Figure 8(b) illustrates edge betweenness centrali-
ties of edges. A darker line means a higher edge betweenness.
Vertex 36 is one of the seed vertices. The blue label could
flow into vertex 39. Since vertex 39 is a low degree ver-
tex, based on degree-based normalization, it is highly likely
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Figure 7: Mean accuracy (± 1 SD) of the proposed
method and GNetMine with four seed vertices on
three homogeneous networks (a) and the raw accu-
racy evaluated in each independent iteration of ex-
periments on Zachary’s karate club (b) , dolphin (c),
and political blogs (d) networks.
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(b) Edge betweenness

Figure 8: Setting of the fifth iteration of experi-
ments on dolphin network, reported in Figure 7(c).
(a) The blue and red vertices are seed vertices col-
ored according to their initial labels. The white
vertices are unlabeled. The blue and red edges are
intra-community edges. The purple edges are inter-
community edges. (b) A darker color of an edge
shows its higher edge betweenness centrality. The
colors of vertices indicate their ground-truth labels.

that the blue label can flow further into vertex 57 and its
neighbors. In contrast, the proposed method can limit the
flow from vertices 39 to 57 because their connection has a
relatively high edge betweenness centrality and only a small
amount of information flows from vertex 36 to vertex 39.
As shown in Figure 9, vertex 57 and its neighbors were in-
correctly classified by GNetMine. In contrast, the proposed
method can predict their true labels.

The last experiment for this question was done on the
four-area dataset. Again, to create the label information,
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(a) Proposed method
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(b) GNetMine

Figure 9: Incorrectly predicted vertices, which are
orange, of the proposed method (a) and GNetMine
(b) in the fifth iteration of the experiment on the
dolphin network, reported in Figure 7(c).

Table 3: Properties of four variants of the four-area
network

Measure 500A 1000A 5000A Original

Vertices
Authors 500 1,000 5,000 14,216
Papers 7,598 9,589 12,998 13,896
Conferences 18 18 18 18
Terms 6,067 7,004 8,453 8,785
Total 14,183 17,611 26,469 36,915

Edges
Author-Paper 11,530 16,136 30,030 40,491
Term-Paper 59,925 75,798 103,440 110,770
Conf.-Paper 7,598 9,589 12,998 13,896
Total 79,053 101,523 146,468 165,157
Avg. Degree 11.148 11.529 11.067 8.948
Diameter 8 8 8 8

5%, 10%, 15%, and 20% of author vertices were randomly
chosen and put into L. In this experiment, five independent
repetitions of experiments were conducted as well. Further-
more, the methods were tested on three sub-networks de-
rived from the four-area dataset. The top 500, 1000, and
5000 authors with their corresponding papers, terms, and
conferences were extracted. The term top authors means
the number of their papers are larger than the others. In
the following, the sub-networks will be referred to as 500A,
1000A, and 5000A networks, respectively. Table 3 summa-
rizes these networks and the original network.

The results are shown in Figure 10. They demonstrate
that the proposed method significantly outperforms base-
line systems on all variants of the four-area network. Fig-
ure 10(a), 10(b), and 10(c) shows that the proposed method
achieves more than 5 percentage points increase in accu-
racy from GNetMine when 5% of authors are initially la-
beled. Table 3 shows the average degrees of vertices in 500A,
1000A, and 5000A networks are higher than eleven. These
mean our proposed method is strongly better than GNet-
Mine in dense networks with a few seed vertices. GNetMine
yields higher accuracies than LGC. The generalization to
heterogeneous networks have a significant advantage in the
real-world dataset. The proposed method shows it has great
stability as the variance of its accuracy is low, which con-
forms to the previous results on homogeneous networks.
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Figure 10: Mean accuracy (± 1 SD) of the proposed
method, GNetMine, and LC on four variants of the
four-area network, where seed vertices are randomly
5%, 10%, 15%, and 20% of authors in the network.

5. CONCLUSION
We proposed a novel method for transductive classifica-

tion on heterogeneous information networks. We have ar-
gued that the degree-based edge weight normalization is un-
satisfactory when a degree of a vertex cannot be used to
imply the reliability of its label. Instead, we proposed a
normalization on the basis of edge-betweenness centrality,
under the assumption that edges bridging across communi-
ties should be considered less reliable. This paper further
refined the centrality in two ways. Additional refinements
were proposed to make the centrality suitable for heteroge-
neous networks.

Experimental results have shown that the proposed cen-
trality can distinguish inter-community and intra-community
edges effectively. The results revealed that the two refine-
ments have a true benefit on real-world networks. This has
played a crucial role in helping the proposed classification
method to outperform state-of-the-art methods, GNetMine
and LGC. The proposed method gained a lower variance of
accuracy over multiple choices of training data.

We studied the betweenness defined under the assump-
tion that flows of information in networks follow the shortest
paths. However, another possible assumption is that infor-
mation flows across random paths rather than the short-
est paths. Hence, random-walk edge betweenness, proposed
by [19], would be worth studying. The main weakness of
this study was the computational cost of calculating edge
betweenness centrality. Even though it can be computed
in O(nm) with the algorithm introduced by Brandes’ algo-
rithm [4], the complexity can be considered impractical in
many circumstances. The algorithm needs to be further re-
searched to improve its computational cost, for example, by
unitizing a sophisticated approximation method.
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